Chapter 8: Laboratory Analysis and Diagnostic Studies

Lecture

I. Introduction

Time: 5 Minutes		
Slides: 1–3		
Lecture/Discussion		

A. Laboratory tests

- 1. May include laboratory examinations of the patient's blood, urine, cerebrospinal fluid (CSF), or other body fluid.
 - a. Called "labs."
- 2. Serve many purposes in critical care transport environment, requiring CCTP to:
 - a. Feel comfortable with normal ranges for each lab value and associated physiologic meaning of test
 - b. Understand the purpose of performing tests
 - i. Should be ordered with thoughtful, evidence-based approach
 - ii. Not meant to satisfy curiosity, "complete the picture" for particular test panel, or reassure concerned family or staff

II. Principles of Analysis

Time: 8 Minutes		
Slides: 4–8		
Lecture/Discussion		

- A. CCTP should always keep certain principles that guide the analysis of all laboratory values in mind.
 - 1. Appreciation of lab test's precision and accuracy essential to its proper use
 - a. High precision:
 - i. Value will be the same each time
 - ii. Measure of tolerance or variation within multiple measurements
 - iii. Does not reflect how well measurements compare with true value
 - b. Accuracy: Value (or average value) conforms to standard or true value.
 - c. Scientists strive for tests that are precise and accurate.
 - 2. Awareness that laboratory tests have differing levels of sensitivity and specificity
 - a. Sensitivity: Ability of test to indicate whether person does or does not have a certain condition
 - i. Highly sensitive test: Most people with the condition would have a positive result.
 - ii. Low sensitivity: Many people with the condition would have a negative result.

- iii. Considered the proportion of people with target disorder who have positive test result
- b. Specificity: Proportion of people without target disorder who have negative test result
- c. D-dimer test of hypercoagulability to test for DVT example of sensitivity and specificity
 - i. Sensitivity calculated by dividing number of patients with positive test result by actual number of patients with disorder (93%)
 - ii. Specificity calculated by dividing number of patients with negative test result by actual number of patients without disorder (79%)
- 3. Awareness that certain tests lend themselves to certain levels of analysis
 - a. Qualitative assessment: Result does not identify specific level
 - i. Example: Serologic blood test examining for presence or absence of hepatitis B virus
 - b. Quantitative test: Indicates exact amount
 - c. Semiquantitative assessment
- 4. Refraining from becoming overly concerned about notion of normal versus abnormal lab values
 - a. Remember, a normal range, empirically derived, represents values that 95% of healthy people would have for a particular test.
 - i. Critically ill people do not fit this profile
 - ii. 5% of healthy people have results outside of "healthy" range
 - b. Normal range for particular lab test subjective in ED or intensive care unit context
 - c. Abnormal result may be desired effect of particular treatment
 - d. Do not ignore abnormal lab values, but put into context of patient's entire clinical picture
 - i. Confirm abnormal findings
 - ii. Check validity of test by other tests or assessment methods
 - iii. Re-examine validity if other tests do not support abnormal results
 - iv. Consider technical errors as a factor
- 5. Understand that different laboratories have different normal ranges for the same tests.
 - a. Example: Three different sets of normal ranges for each test they perform
 - b. Pay careful attention to normal values (indicated on report forms) when reviewing lab reports.

III. Specimen Cultures

Time: 2 Minutes

Slide: 9

Lecture/Discussion

- A. Blood, urine, sputum, and other body fluid cultures provide information that is used to identify microorganisms and treat specific infections.
 - 1. Culture tests
 - a. Example: Sputum culture for suspected respiratory infection
 - 2. Sensitivity test
 - a. Example: To determine appropriate antibiotic for bacterial infection
 - 3. C and S: Culture and sensitivity

- a. Usually takes 3 days for culture and sensitivity report
 - i. Initial report within 24 hours
 - ii. Complete, final report in 72 hours

IV. Chemistry Review

Time: 6 Minutes		
Slides: 10–13		
Lecture/Discussion		

- A. Physiology is built on the basics of chemistry and cellular biology.
 - 1. CCTPs should have knowledge of principles
 - a. Necessary for insightful test interpretation

B. Ions

- 1. Atoms that have gained or lost electrons
 - a. Each electron has single, negative charge
 - b. Loss of electron makes atom more positive, or with a "less negative" charge
 - c. Gain of electron makes atom more negative, or with a "less positive" charge
- 2. Cation: Positively charged ion
- 3. Anion: Negatively charged ion
- 4. Adding or deleting electrons
 - a. If one electron is deleted, charge is +1; if two electrons are deleted, its charge is +2.
- b. If one electron is added, charge is -1; if two electrons are added, its charge is -2.
- 5. Ionic bond: When ions of opposite charge join together
 - a. Example: Sodium chloride (NaCl—table salt)
- 6. Amounts expressed in moles or equivalents
 - a. Mole: Unit representing 6.02×10^{23} atoms
 - b. Equivalents (Eq): Measure amounts of charged particles
 - i. 1 Eq equal to 1 mole of ionic charges
 - ii. Example: 1 Na⁺ atom has 1 charge; 1 mole of Na⁺ atoms has 1 mole of charges (1 Eq)
 - iii. Example: 1 mole of Ca⁺⁺ has 2 moles of charges (2 Eq)
 - c. Concept applies only to charged particles
 - i. Uncharged molecules (proteins) electrically neutral overall

C. Osmolarity

- 1. Osmotic pressure created by blood, CSF, or urine sample of interest to CCTPs
 - a. Created in space divided by semipermeable membrane
 - i. Based on differences in concentrations of solutes found in solutions on either side of membrane
 - b. Osmolarity
 - i. How osmotic pressure is measured in humans
 - ii. Measures amount of dissolved substance in 1 kg of water
 - iii. Often mislabeled as osmolality
 - iv. Osmole (Osm): Unit of measurement; pressure created by 1 mole of particles in solution
 - c. Osmolality
 - i. Measures amount of dissolved substance in 1 L of water
- 2. Osmotic pressure depends only on number of particles in fluid, not size of the particles

- a. Example: Single protein or sugar molecule induces same osmotic pressure as single ion of sodium (Na⁺)
- 3. Concentration
 - a. Amount of substance present in given volume of fluid
 - b. Most concentrations incredibly small:
 - i. Units of 1/1,000 (milli-) include: millimoles (mmol), milliequivalents (mEq), milliosmoles (mOsm)
- 4. Reporting laboratory values
 - a. Conventional units
 - i. Example: Milliequivalents per liter
 - b. Système International d'Unités (SI units)
 - i. Example: Millimoles per liter
 - c. Many laboratories use both
 - d. Make sure reported units of measure are same as units of measure given in normal range
- 5. Variations in normal ranges exist
 - a. Among laboratories
 - b. From one instrument manufacturer to another
 - c. CCTP should know normal ranges for tests used in critical care

V. Biochemistry Review

Time: 2 Minutes		
Slide: 14		
Lecture/Discussion		

- A. Examining proteins and enzymes in serum samples is also critical to determining condition of patient
 - 1. The human body contains thousands of different kinds of proteins.
 - 2. Enzymes are proteins that act as catalysts for biochemical reactions.
 - a. Formation of one biologic substance from another may proceed slowly when just two substances are present.
 - i. Adding appropriate enzyme may cause the reaction rate to increase many times.
 - ii. Methods of measuring enzyme levels rely on this basic catalytic principle.
 - b. Calculating amount of enzyme present involves:
 - i. Knowing beginning amount of substrate
 - ii. Knowing amount of product produced
 - iii. Assuming normal enzyme function
 - c. Function measured in units per liter (U/L)
 - i. Equals the amount of enzyme that catalyzes 1 micromole (µmol) of substrate per minute

VI. Lab Profiles

Time: 39 Minutes	
Slides: 15–40	

- A. Groups of related tests can be performed as a single unit, called a panel (or profile).
 - 1. Single unit comprising related tests often named for tests' common link
 - a. Example: Liver panel consists of a set of tests that examine liver function
 - b. Written as matrix in patient's hospital chart
- B. Lab values in blood samples
 - 1. One of the most basic, fundamental assessments done in ED or intensive care unit.
 - a. Basic metabolic panel (or Chem-7)
 - 2. Sodium (Na⁺)
 - a. Major extracellular ion
 - i. Serum concentration in healthy person: 136 to 142 mEq/L (mmol/L)
 - ii. Intracellular concentrations: 3 to 20 mEg/L
 - b. Serum sodium level may change dramatically.
 - i. Primarily due to changes in extracellular water concentrations
 - ii. Convenient marker for patient's fluid status
 - iii. One of key components of serum osmolality calculation
 - iv. Abnormal level will not manifest with ECG changes, but revolve around neurologic sequelae owing to changes in osmolality
 - v. Elevated levels not uncommon in patients undergoing critical care transport
 - c. Low levels (hyponatremia)
 - i. Abnormally low level of sodium in blood
 - ii. Often results from excess of free water or excessive sodium depletion
 - iii. Congestive heart failure, renal failure, liver disease, diuretic therapy
 - iv. To correct, slower is better: 0.5 mEq/L per hour
 - d. Elevated levels
 - i. Found in patients with traumatic brain injuries; may often exceed 170 mEg/L
 - e. Patient care for high or low levels:
 - i. Monitor intake and output, including oral and IV input
 - ii. Level of less than 125 mEq/L can result in behavioral changes, confusion, delirium, increased respiratory rate, muscle twitching, increased intracranial pressure, and cardiac abnormalities
 - iii. Increased sodium levels can cause fluid retention and cardiac abnormalities
 - 3. Potassium (K⁺)
 - a. Major intracellular cation
 - i. Extracellular concentration normally 3.5 to 5.0 mEg/L
 - b. Hyperkalemia (abnormally high K⁺ level)
 - i. Abnormally high level
 - ii. Can cause cardiac arrhythmias
 - iii. Level of 5.5 to 6.5 mEq/L can result in classic peaked T waves, with flattened P waves occurring when the potassium level exceeds 7.0 mEq/L
 - iv. Exacerbated by derangements in other electrolytes
 - v. May be caused by: excessive potassium supplementation, intracellular to extracellular fluid shifts with cellular lysis, drug administration, metabolic acidosis, decreased excretion (acute renal failure)
 - vi. Be aware that many abnormally high potassium levels are actually reported in error

- vii. May cause: cardiac abnormalities (atrioventricular and intraventricular blocks), atrial arrest if level reaches 9 mEq/L
- c. Hypokalemia (abnormally low K⁺ level)
 - i. Causes: cellular shifts, increased potassium excretion
 - ii. May lead to arrhythmias and ECG changes in older patients
 - iii. May also cause muscle pain, hyporeflexia, nausea, vomiting, orthostatic hypotension
- 4. Chloride (Cl⁻)
 - a. Major extracellular anion
 - i. Single electrical charge offsets positive charge of Na⁺ and K⁺
 - ii. Maintains electrical neutrality within body
 - b. Healthy range: 96 to 106 mEq/L
 - c. Hypochloremia (abnormally low level)
 - i. May cause impending renal dysfunction
 - ii. Patients receiving diuretic therapy
 - d. Hyperchloremia (abnormally high level)
 - i. May be exhibited by patients with excess diuresis
 - ii. May cause: circumoral numbness and tingling, muscle hypertonicity, decreased respiratory rate and depth, possible complaints of nervousness, signs of central nervous system stimulation
 - e. Mimic sodium levels
- 5. Carbon dioxide (CO₂)
 - a. Venous bicarbonate level is most basic indication of acid-base status
 - i. Indicates the amount of bicarbonate (HCO₃) in venous sample
 - b. Carbon dioxide and bicarbonate are equilibrium
 - i. CO₂ is a gas; express value as partial pressure
 - ii. HCO₃ is an ion; express as a concentration
 - c. Low levels may indicate
 - i. Metabolic acidosis
 - ii. Respiratory alkalosis
 - d. Elevated levels could indicate
 - i. Metabolic alkalosis
 - ii. Respiratory acidosis
 - e. Normal HCO₃ value: 21 to 28 mEq/L
 - f. Normal CO₂ value: 22 to 28 mEq/L
- 6. Blood urea nitrogen (BUN)
 - a. Product of protein catabolism
 - i. Related to the amount of protein intake, protein metabolism, and rate of excretion
 - b. Useful marker for adequate kidney function
 - c. Normal range: 8 to 23 mg/dL
 - d. Levels may increase with age: 28 to 35 mg/dL
 - e. Monitor values over 40 mg/dL
 - f. Elevated levels may occur with:
 - i. Decreased renal function
 - ii. High-protein diet
 - iii. Presence of a high-protein catabolism state (burns and crush injuries)
- 7. Creatinine
 - a. Major storehouse of intramuscular high-energy phosphate
 - b. Degraded to creatinine (Cr) at relatively steady rate by muscles
 - i. Rate varies by only 10% per person

- c. Used to assess kidney function
 - i. Filtered by kidneys; excreted in urine
 - ii. Urine function decrease causes levels to rise
 - iii. Normal: 0.6 to 1.2 mg/dL
- d. An abnormal serum level does not indicate disease or its cause, but does indicate some level of decreased renal function
- e. Care must be taken when a geriatric patient has a Cr level slightly higher than the upper normal value
 - i. Near 1.5 mg/dL
- f. May cause permanent damage to kidneys
 - i. Lifetime dialysis
 - ii. Kidney transplantation
- g. Creatinine clearance is the most accurate measure of glomerular filtration rate.

8. Glucose

- a. Most important carbohydrate in body
- b. Assessed in the field with point-of-care testing device
 - i. May be performed on unconscious or semiconscious patients
- c. Normal: 70 to 110 mg/dL
- d. CCTP work to maintain normal level
 - i. Hypovolemic shock
- e. High levels can lead to:
 - i. Coma
 - ii. Death
- f. Low levels
 - i. Easier to detect (dizziness, nausea)
 - ii. Can lead to unconsciousness

9. Total calcium

- a. Essential electrolytes
 - i. Range of functions: Muscle contraction to intracellular signal transduction
- b. Three states:
 - i. Free (47%)
 - ii. Chelated
 - iii. Bound to proteins (43%)
- c. Sum of all calcium in the body is expressed as the total calcium level (Ca⁺⁺_{TOT})
 - i. Normal range: 8.2 to 10.2 mg/dL
- d. High levels:
 - i. Hyperparathyroidism
 - ii. Parathyroidsecreting tumors
- e. Low levels:
 - i. Renal insufficiency
 - ii. Hypomagnesemia
 - iii. Hyperphosphatemia
 - iv. Massive blood transfusion
 - v. Decreased parathyroid hormone states

10. Ionized calcium

- a. Only calcium that is not bound or chelated is physiologically active
- b. Assess free calcium in states where there are altered fractions of bound or chelated calcium
 - i. Renal failure or nephrotic syndrome (hypoalbuminemia)
 - ii. Acid-base derangements (acidosis)

- iii. Decreases or elevations in chelating compounds (citrate, bicarbonate, lactate, phosphate, sulfate)
- c. Normal range: 4.60 to 5.08 mg/dL
- d. Low levels:
 - i. Serious arrhythmias, especially in prolonged cardiac arrest
- e. Calcium administration may be warranted for:
 - i. Hyperkalemia
 - ii. Hypocalcemia
 - iii. Toxic levels of calcium-channel blockers
- 11. Magnesium (Mg)
 - a. Affected by many body systems
 - i. GI and endocrine systems
 - b. Normal: 1.3 to 2.1 mEq/L
 - c. High levels unusual, caused by:
 - i. Renal defects
 - ii. Severe dehydration
 - iii. Overadministration of Mg
 - iv. Untreated diabetic coma
 - v. Aspiration of sea water
 - d. Low levels (more common)
 - i. GI distress
 - ii. Vomiting and diarrhea
 - iii. Hepatic cirrhosis
 - iv. Pancreatitis
- C. Blood components
 - 1. Complete blood count (CBC) test
 - 2. Hematocrit (Hct)
 - a. High sensitivity, low specificity
 - b. Percentage of formed elements (cells) in venous blood sample
 - i. Example: Hct value of 45% indicates sample consists of 45% cells or cellular debris, and 55% plasma
 - c. Normal range: 41% to 50%
 - 3. Hemoglobin (Hg or Hb)
 - a. Protein that carries oxygen to cells and carbon dioxide back to lungs
 - b. Levels vary by gender
 - i. Males: 135 to 175 g/L (14.0 to 17.5 g/dL)
 - ii. Females: 120 to 160 g/L (12.0 to 16.0 g/dL)
 - c. Elevated levels
 - i. People with hemoconcentration caused by dehydration, burns, or excessive vomiting
 - d. Low levels
 - i. Of more concern
 - ii. Most types of anemia (microcytic, normocytic, and macrocytic)
 - 4. Carboxyhemoglobin (COHb)
 - a. Normal levels: Not to exceed 0.02 (2%) based on amount of total hemoglobin
 - b. Assessment used to:
 - i. Confirming carbon monoxide poisoning
 - ii. Guide therapy
 - c. Use caution when assessing in smokers
 - i. Have higher baseline
 - 5. Red blood cell (RBC) count

- a. Number of erythrocytes per microliter (µL) of blood
- b. Normal range: 3.9 to $5.5 \times 106/\mu$ L
 - i. Abnormal number does not always indicate disease
- c. High levels
 - i. Patients with elevated white blood cell counts may have erroneously high RBC level
- d. Low levels
 - i. All types of anemia
- 6. White blood cell (WBC) count
 - a. Measures total number of leukocytes in blood
 - b. Normal range: Between 4,500/μL and 11,000/μL
 - c. Low levels
 - i. Anemias (aplastic anemia)
 - ii. Vitamin deficiencies
 - iii. Sepsis
 - d. High levels (leukocytosis)
 - i. Inflammation or infection
 - ii. Malignancies (leukemia, lymphoma)
 - iii. Vascular conditions (pulmonary embolism, AMI, DVT
 - iv. Steroid administration
 - v. Stress from trauma
- 7. Platelet count (Plt)
 - a. Assesses patient's coagulation status
 - b. Normal range for whole blood sample: 150 to $350 \times 103/\mu L$
 - c. Elevated levels
 - i. Myeloproliferative disorders (polycythemia, chronic myelogenous leukemia)
 - d. Low levels
 - i. Thrombocytopenia caused by splenomegaly, disseminated intravascular coagulation, high circulating levels of platelet antibodies
- 8. Proteins
 - a. Total protein
 - i. Examines total quantity of protein in blood sample
 - ii. Normal range: 6.0 to 8.0 g/dL
 - iii. Fluctuations in serum albumin levels cause variations
 - b. Albumin
 - i. Acts as transport protein for free fatty acids, bilirubin, hormones, drugs
 - ii. Acts as free radical scavenger
 - iii. Serves as main source (70%) of protein-generated oncotic pressure
 - iv. Normal range: 3.5 to 5.0 g/dL
 - v. Low levels: increased catabolism of protein, decreased production, edema, liver disease or damage, hypoalbuminemia can lead to acute respiratory distress syndrome
 - vi. High levels: dehydration, not pathologic
 - c. C-reactive protein (CRP)
 - i. Indicator of inflammation (rises 4 to 6 hours after injury)
 - ii. Normal range: 0.08 to 3.1 mg/L
 - iii. Level above 10 mg/L indicates significant inflammatory disease
 - d. Myoglobin
 - i. Oxygen-carrying heme protein present in high concentrations in cytoplasm of cardiac and skeletal muscles

- ii. Levels may increase in cardiac patients
- iii. Negative myoglobin result used to rule out myocardial infarction
- iv. Normal range: 19 to 92 µg/L
- e. Lactate dehydrogenase (LDH)
 - i. Not sensitive or specific for any disease
 - ii. Normal range of LDH: 100 to 200 U/L
 - iii. Analysis of isoenzyme forms (LD1 to LD5) useful in clinical setting; aid in diagnosis of cellular damage
 - iv. Calculate the LDH1/LDH2 ratio
 - v. The normal range for LD1 is 17% to 27%; for LD2, 27% to 37%
 - vi. Ratio over 85% indicates possible AMI
 - vii. Also be helpful in assisting with the diagnosis of *Pneumocystis carinii* pneumonia and determining severity of pancreatitis
- f. Creatine kinase (CK)
 - i. Found in muscle, liver, lung, GI, brain, kidney, spleen tissues
 - ii. Released into vascular space if any of these tissues damaged
 - iii. Elevated levels: Muscle damage, which may or may not be specific to AMI
 - iv. Normal range for total CK level: 40 to 150 U/L
 - v. MB fraction of CK (CK-MB) refers primarily to CK in heart muscle
 - vi. The normal range for CK-MB level: 0 to 7 ng/mL
- g. Troponin I
 - i. Key protein involved in muscle contraction
 - ii. Has three subunits: T, C, I, each with three separate isoforms
 - iii. One isoform found only in cardiac muscle
 - iv. Normal range for cardiac troponin I (cTnI): 0 to 0.04 ng/mL, but elevations following myocardial injury detectable in serum sample after 4 hours; 6 hours following AMI; levels still detectable 5 to 7 days later
 - v. Also useful to detect severe unstable angina
 - vi. Normal values for various troponins depend on test method, but general normal range: 0 to 0.4 ng/mL for troponin I; 0 to 0.1 ng/mL for troponin T
- h. B-type natriuretic peptide (BNP)
 - i. Indicative of abnormal ventricular function, congestive heart failure if outside of normal range
 - ii. Normal range: less than 167 pg/mL
- i. Aspartate aminotransferase (AST)
 - i. An elevated liver function test (LFT) that measures enzymes normally appearing in liver cells
 - ii. Previously called SGOT
 - iii. Found in liver, skeletal muscle, brain, RBCs, and heart
 - iv. Normal range: 10 to 30 U/L
 - v. Elevated levels seen in liver damage, especially acute hepatitis or biliary tract obstruction, alcoholic cirrhosis, hepatitis, cancer
 - vi. Low levels of no consequence
- j. Alanine aminotransferase (ALT)
 - i. Previously called SGPT
 - ii. Enzyme found in liver, kidney, skeletal muscle, heart
 - iii. Normal range: 10 to 40 U/L
 - iv. High levels found in same conditions as with AST
 - v. Low levels of no consequence

k. Total bilirubin

- i. By-product of RBCs metabolization
- ii. Indirect bilirubin: Not water soluble
- iii. Direct bilirubin: Conjugated in liver, excreted in bile
- iv. Normal range: 0.3 to 1.2 mg/dL
- v. Elevated levels may indicate liver disease, biliary tract obstruction, RBC hemolysis

1. Direct bilirubin

- i. Normal values for direct and indirect bilirubin: 0.1 to 0.3 mg/dL and 0.2 to 0.9 mg/dL, respectively
- ii. Bilirubin may be fractionated to indicate respective levels of unconjugated (indirect) and conjugated (direct) bilirubin

m. Alkaline phosphatase

- i. Found in almost all body tissues
- ii. Manufactured by bone, liver, intestine, placenta
- iii. Essential for proper digestion and absorption through mucous membrane of GI tract
- iv. Clinically useful for testing liver function and diagnosing common bile duct obstruction
- v. Normal range: 30 to 120 U/L

n. Amylase

- i. Produced by the salivary glands and the pancreas, and in smaller amounts by ovaries, small and large bowels, and skeletal muscle
- ii. Normal range: 27 to 131 U/L
- iii. Test to detect: pancreatic insufficiency or damage, (pancreatitis, pancreatic cancer, diabetic ketoacidosis), bile duct obstructions, head trauma
- iv. Low amylase levels seen in people with cystic fibrosis

o. Lipase

- i. Normal range: 31 to 186 U/L
- ii. Test of lipase levels have poor sensitivity in terms of identifying chronic pancreatitis and pancreatic cancer, elevated levels are often seen with both diseases
- iii. Levels prone to elevation in bile duct obstruction or biliary disease

D. Coagulation

- 1. Assessment of the coagulation system involves looking at the intrinsic and extrinsic pathways of the coagulation cascade.
 - a. Begins with activation of factor XII, then factors XI and IX, ultimately resulting in activation of factor X and initiating the common pathway of coagulation
 - b. Extrinsic pathway following tissue injury begins with tissue factor and factor VII, and leads to activation of factor X, initiating common pathway of coagulation
 - c. Fibrin eventually produced, resulting in a clot
 - d. Enzymes involved in coagulation are synthesized in the liver
 - i. Some clinicians consider these enzymes to be the true "liver function tests"

2. Prothrombin time (PT)

- a. Rate of conversion of prothrombin to thrombin in blood sample
- b. Represents function of extrinsic pathway
- c. Normal range: 10 to 13 seconds
- d. Increased in liver disease or warfarin therapy
- e. Decreased with low levels of vitamin K, in DIC, and after massive transfusions

- 3. Activated partial thromboplastin time (aPTT)
 - a. Indicates health of the intrinsic and common pathways of coagulation system
 - b. Elevated levels: hemophilia A, hemophilia B, von Willebrand disease
 - c. Used to assess for DIC (grossly elevated from normal range)
 - d. Used to assess for the correct therapeutic effect of heparin
 - e. Normal range: 25 to 40 seconds
- 4. International normalized ratio (INR)
 - a. Normalizing index that uses international sensitivity index
 - b. Normal range: 0.9 to 1.3
 - c. Increased ratios seen in same diseases in which PT is increased and in persons receiving anticoagulants
 - d. Often used to target anticoagulant therapy
 - i. Typical anticoagulation target for INR often ranges from 2.0 to 3.0

E. Lactate

- 1. Venous lactate level is a popular indicator of patient's tissue and end-organ perfusion and oxygenation.
 - a. Perfusion and oxygenation of cells, tissues, end organs considered inadequate if serum lactate level is more than normal (normal range, 5.0 to 15 mg/dL).
 - i. Nonspecific
 - ii. Lactate level slow to respond to adequate resuscitation with fluid, oxygen

F. Osmolality

- 1. Normal range: 275 to 295 mOsm/kg
 - a. Patient with low level of free water (dry); osmolality high because there will be more particulate matter for a given volume of serum
 - b. Patient with high level of water ("wet"); low osmolality
- G. Ethanol (EtOH)
 - 1. Not normal physiologic product in body, result of alcohol consumption
 - a. Legal intoxication in most states: More than 80 mg/dL
 - 2. Refer to their protocols and guidelines before drawing sample
- H. Calculated values
 - 1. AST:ALT
 - a. Determines cause of liver dysfunction
 - 2. BUN:Creatinine
 - a. Determines cause of increased levels of two metabolites that indicate renal pathology: BUN and Cr
 - 3. Anion gap (AG)
 - a. Normal range: 8 to 16 mEq/L
 - b. Increase indicates that unmeasured anions (such as in lactic acid) are present

VII. Blood Gases

Time: 12 Minutes		
Slides: 41–48		
Lecture/Discussion		

- A. Typical arterial blood gas (ABG) panel
 - 1. Assesses patient's acid-base status (pH) based on CO₂ tension (PaCO₂), bicarbonate level, and base excess (BE)

- 2. Measures patient's oxygen status, oxygen tension (PaO₂), and oxygen saturation (SaO₂)
- B. Acid-base status
 - 1. Hydrogen ion concentration (PH)
 - a. Quantifies the amount of unbuffered H⁺ present
 - b. Related to the amount of CO₂ and the amount of HCO
 - c. Increase in PCO₂ results in smaller fraction component, causing lower pH (acidic)
 - d. Increase in the HCO₃⁻ will cause a larger fraction and result in pH increase (alkaline)
 - e. Decreased PCO₂ will increase pH; decreased HCO₃ will decrease pH
 - f. Normal range for arterial pH: 7.35 to 7.45
 - g. Normal range for venous pH: 7.31 to 7.41
 - h. Normal physiologic reactions may be drastically affected with extreme variations
 - 2. Partial pressure of carbon dioxide
 - a. Considered the "respiratory" component of blood gas analysis
 - b. Respiratory derangement present either above or below the normal range of 35 to 45 mm Hg
 - i. Primary: Respiratory acidosis or alkalosis
 - ii. Secondary: Compensated metabolic acidosis or alkalosis
 - c. Elevations above sea level increase respiratory rate as result of lower partial pressure of oxygen
 - i. Lower-than-normal PaCO2 in blood
 - 3. Bicarbonate
 - a. Represents the metabolic component
 - b. If there is a metabolic aspect to an acidosis- or alkalosis-related condition, a corresponding derangement will be seen
 - c. Normal range: 21 to 28 mEq/L
 - d. Administration of intravenous bicarbonate to treat metabolic acidosis controversial
 - i. Not generally indicated unless underlying cause of acidosis cannot be corrected or the pH is less than 7.20
 - 4. Base excess (BE)
 - a. Measurement of metabolic derangement that is included as part of the ABG panel
 - b. Also known as base deficit (BD) because value can be either positive number (excess) or negative value (deficit)
 - i. Healthy people do not have appreciable BE
 - c. Measured in units of mEq/L
 - i. Normal range of -2 to +3
 - ii. Negative: excess amount of acid or lack of base
 - iii. Positive: deficient amount of acid or an excess amount of base
 - d. Some clinicians use base excess to assess for proper fluid resuscitation
- C. Oxygenation status
 - 1. Partial pressure of oxygen
 - a. Measures amount of oxygen dissolved in blood
 - b. Normal range: 80 to 100 mm Hg
 - c. Most important is for to remain within normal range
 - d. Hypoxia: Falls below 80 mm Hg
 - e. Lower levels in the blood at elevations above sea level
 - 2. Oxygen saturation
 - a. Measures percentage of potential oxygen-binding sites on hemoglobin occupied by oxygen molecules

- Oxygen saturation measured transcutaneously using saturation monitor and probe differs from oxygen saturation calculated from arterial or venous blood sample reported on blood gas report
- c. Normal value for measured SaO₂: greater than 93%
- d. Calculated saturation from blood gas values can give falsely elevated saturation when abnormal hemoglobin variants, such as carboxyhemoglobin and methemoglobin, are present in sample
- D. Obtaining an arterial blood sample
 - 1. Review Skill Drill 8-1: Obtaining an Arterial Blood Sample

VIII. Blood Group Testing

Time: 3 Minutes			
Slides: 49–50			
Lecture/Discussion			

- A. Blood typing is done to determine the blood group according to the ABO system and other classification systems.
 - 1. ABO system based on antigen groups that cause largest humoral response
 - a. Four result from two primary antigens, A and B:
 - i. A, B, AB, O
 - b. Type A carries A antigen
 - c. Type B carries B antigen
 - d. Type AB carries both antigens
 - i. Universal recipients
 - e. Type O carries neither antigen
 - i. Universal donors
 - f. People with any blood type can develop an immune response if they receive large amounts of unmatched blood
 - 2. Rh antigens found in all blood types
 - a. Rh antigen D (Rh factor) important in immune responses
 - i. Rh positive means person has this antigen
 - ii. Rh negative means person does not have the antigen
 - b. Majority of population is Rh positive
 - c. Rh-negative patient who receives Rh positive blood transfusion may have immune response reaction (anaphylaxis, anaphylactic shock)
 - i. Rh-negative woman receiving Rh-positive blood will develop antigens that can harm future pregnancies
 - d. Most patients needing blood products are given type O-negative blood until typing and crossmatching are done.

IX. Obtaining a Venous Blood Sample

Time: 5 Minutes		
Slides: 51–53		
Lecture/Discussion		

- A. Ideally complete during baseline evaluation of patient, before administering any IV fluids or medications
 - 1. Some antibiotics require peak and trough be monitored at certain times.
 - a. Samples for serial levels of CK-MB and troponins
 - b. PT and aPTT testing
 - 2. Use another extremity if patient has IV line and receiving fluids, medications
 - a. If lines in both, use one without the medications
 - b. Stop flow of fluid or medication immediately prior to obtaining blood sample to avoid contamination with infusate
- B. Blood tube usage
 - 1. Selected primarily for preservatives or lack of preservatives they contain
 - a. Most laboratories have specific requests they will communicate to CCTP

X. Urine Lab Values

Time: 6 Minutes			
Slides: 54–57			
Lecture/Discussion			

- A. Urinalysis (UA) involves performing various laboratory tests (some of the same performed on blood samples) on a patient's urine.
 - 1. Range from simple (color) to complex (specific gravity)
 - 2. Detect drugs for hours, days, or weeks after use of drug
 - a. Toxic levels of selected substances
- B. Color
 - 1. Simple test that notes urine's color:
 - a. Yellow, pale, clear, and so on
 - 2. Function of concentration
 - a. More concentrated urine darker yellow
 - 3. Particulates can also affect
 - a. Blood or damaged glomeruli or renal tubular: reddish
 - b. Protein: brown or tea-colored
 - i. Hallmark sign of rhabdomyolysis
- C. Appearance
 - 1. Categorized as clear or turbid
 - a. Turbidity can be indicative of bladder infection
- D. Specific gravity
 - 1. Chemical property of a fluid that relates its density to density of water.
 - a. Distilled water: Specific gravity of 1
 - b. Fluid denser than water: Specific gravity greater than 1
 - 2. Urine
 - a. More concentrated urine samples are denser with higher specific gravity
 - b. Diluted urine samples have low specific gravity
 - 3. Numerous factors can affect the kidney's ability to concentrate the urine, including:
 - a. Low levels of antidiuretic hormone secreted from pituitary gland causing diabetes insipidus
 - b. Glomerulonephritis
 - c. Pyelonephritis
 - 4. Normal range: 1.003 to 1.035

a. In a setting of impaired ability to concentrate urine, specific gravity may approach 1.001

E. pH

- 1. Useful marker for metabolic acidosis.
- 2. Urine pH has relatively wide normal range: 4.5 to 8.0
 - a. Patients with acidic urine often have large amounts of unbuffered acid
 - b. Salt wasting may also occur as body excretes positive ions to counteract negatively charged acid salt of lactate or keto acetate
- 3. Four types of renal tubule acidosis (RTA) may induce inability to excrete
 - a. CCTPs should be able to identify presence of RTA:
 - i. Arterial pH of less than 7.35
 - ii. Urine pH of greater than 6.0
 - b. Causes wasting of potassium and magnesium

F. Glucose

- 1. Presence of glucose (glycosuria) is almost always indicative of elevated serum glucose levels.
 - a. Value is 0 in healthy people
 - b. Amount graded on scale of mild to severe: +1, +2, +3, +4
- 2. May signal:
 - a. Ineffective insulin production or use (diabetes mellitus)
 - b. Result from administration of a carbohydrate-containing IV fluid
 - c. Context of patient will dictate when value outside normal range is pathologic

G. Ketone bodies

- 1. Describes a number (typically three) of organic products:
 - a. Acetoacidic acid
 - b. Acetone
 - c. Beta-betahydroxybutyric acid
- 2. Acetoacidic acid and beta-hydroxybutyric acid are keto acids that result from poorly controlled diabetes mellitus
 - a. Presence of in urine can help identify
- 3. Other causes of ketonuria include:
 - a. Alcoholic ketoacidosis
 - b. Starvation ketosis
- 4. Grading level scale of mild to severe: +1, +2, +3, +4

H. Protein

- 1. Normal reference value in qualitative test would be negative (or not detectable)
- 2. Presence of may indicate kidney diseases
 - a. Renal causes:
 - i. Glomerulonephritis
 - ii. Polycystic kidneys
 - iii. Diabetic nephropathy
 - iv. Toxic nephropathy
 - v. Nephrosclerosis
 - vi. Nephritic syndrome
 - b. Extrarenal causes:
 - i. Preeclampsia
 - ii. Multiple myeloma
 - iii. Urinary tract disease
 - iv. Amyloid disease
 - v. Systemic lupus erythematosus
 - vi. Congestive heart failure

vii. Constrictive pericarditis

- I. Blood and hemoglobin
 - 1. Presence of blood (hemoglobinuria) highly suggestive of kidney or urinary tract damage
 - a. Often indicates traumatic passage of RBCs through collecting ducts, urinary bladder, or urinary tract
 - b. Filtering of serum hemoglobin during hemolytic transfusion reactions or certain blood disorders
 - i. Hemolytic anemia
 - 2. Presence of RBCs (hematuria) may indicate presence of glomerular membrane or urinary tract disease caused by:
 - a. Infectious processes (commonly from urinary tract infections)
 - b. Neoplasms
 - c. Ureterolithiasis
 - d. Trauma
 - 3. Presence of hemoglobin without presence of RBCs can indicate rhabdomyolysis
 - 4. Quantitative analysis of urine performed

XI. Cerebrospinal Fluid

Time: 3 Minutes

Slides: 58–59

Lecture/Discussion

- A. Obtained by lumbar puncture
 - 1. Used to detect:
 - a. Increased intracranial pressure
 - b. Diabetic coma
 - c. Diabetes
 - d. Multiple sclerosis
 - e. Guillain-Barré syndrome
 - f. Bacterial meningitis
 - g. Fungal meningitis
 - 2. Normal results:
 - a. Pressure: 50 to 180 mm H2Ob. Appearance: clear, colorless
 - c. Total protein: 10 to 45 mg/100 mL
 - 1. Gl. 700 1100 11
 - d. Glucose: 50 to 80/100 mL
 - e. Cell count: 0 to 5 WBCs, no RBCs
 - f. Chloride: 110 to 125 mEq/L

XII. Common Errors in Specimen Collection

Time: 2 Minutes		
Slide: 60		
Lecture/Discussion		

- A. Incorrect patient identification and the mislabeling of samples are the most common specimen collection errors.
- B. Two of the most common problems associated with any specimen collection in the field are improper technique or handling and improper labeling.
 - 1. Resolve improper labeling by placing minimal required information on label for sample, including:
 - a. Patient's name and date of birth
 - b. Date and time specimen was collected
 - c. CCTP's name or initials
 - d. Patient identification number or last four digits of patient's Social Security number
 - 2. Improper technique or handling can be difficult to address, especially in the field setting, because:
 - a. Extreme temperatures can affect optimal processing and results
 - b. Trauma to blood specimens may create hemolyzed sample
 - c. Fluids or medication patient receiving may interfere with obtaining "clean" sample
 - d. Particular laboratories may require samples to be supplied in specific tubes or containers

XIII. Diagnostic Imaging

Time: 6 Minutes		
Slides: 61–63		
Lecture/Discussion		

- A. CCTP should be familiar with these studies and be able to perform basic interpretation for obvious abnormalities, such as long-bone fractures, masses, and catheter placements.
 - 1. Have a system and use it every time to prevent overlooking findings
 - 2. Extensive interpretation beyond scope of book
- B. Standard radiographs
 - 1. Rapidly obtained and used for quick diagnostics in patient care
 - 2. Typically obtained in a lateral or anteroposterior (AP) view
 - 3. Can provide confirmation of:
 - a. Endotracheal tube placement
 - b. Cervical fractures
 - c. Chest interpretations
 - d. Most major bone fractures
- C. Computed tomography (CT) or cat scanning
 - 1. Provides cross-sectional images of body structures in the body plane
 - 2. Commonly used when necessary to evaluate different characteristics of tissues, bones, organs
 - a. Views or "slices" can pick up abnormalities not seen with traditional plain radiography
 - 3. Can reveal conditions such as:
 - a. Aortic dissection
 - b. Lung injuries
 - c. Abdominal organ injuries

- d. Fractures
- e. Pulmonary emboli
- f. Pleural effusions
- g. Acute respiratory distress syndrome
- 4. When transporting a critically ill patient who has had a recent CT scan, CCTP should attempt to obtain a printed or electronic copy to expedite care on arrival at receiving center.
- D. Magnetic resonance imaging (MRI)
 - 1. Diagnostic imaging technique most commonly used to visualize internal structure and function of body
 - a. Provides greater contrast of different soft tissues than CT scan
 - b. Patient not exposed to radiation
 - 2. Useful when performed:
 - a. On brain
 - b. On spinal cord
 - c. In musculoskeletal, cardiovascular, oncologic imaging
 - 3. May be limited by:
 - a. Patient's size
 - b. Patient's ability to tolerate enclosed, "tunnel" environment
 - 4. Safety precautions required
 - a. Keep equipment and other metals away from control area
- E. Ultrasonography
 - 1. Advantages:
 - a. Does not expose patient to radiation
 - b. Portable
 - 2. Typically used for:
 - a. Obstetrics and gynecology
 - b. Abdominal diagnostics
 - c. Blood-flow studies and cardiac diagnostics